Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 0606920100180030343
Biomolecules & Therapeutics
2010 Volume.18 No. 3 p.343 ~ p.349
Pharmacokinetic Drug Interaction between Carvedilol and Ticlopidine in Rats
Choi Jun-Shik

Choi Dong-Hyun
Abstract
This study was designed to investigate the effects of ticlopidine on the pharmacokinetics of carvedilol after oral or intravenous administration of carvedilol in rats. Carvedilol was administered orally (3 mg/kg) or intravenously (1 mg/kg) without or with oral administration of ticlopidine (4, 12 mg/kg) to rats. The effects of ticlopidine on P-glycoprotein (P-gp) and cytochrome P450 (CYP) 2C9 activity were also evaluated. Ticlopidine inhibited CYP2C9 activity in a concentration-dependent manner with 50% inhibition concentration (IC50) of 25.2 ¥ìM. In addition, ticlopidine could not significantly enhance the cellular accumulation of rhodamine 123 in MCF-7/ADR cells overexpressing P-gp. Compared with the control group (given carvedilol alone), the area under the plasma concentration-time curve (AUC) was significantly (12 mg/kg, p£¼0.05) increased by 14-41%, and the peak concentration (Cmax) was significantly (12 mg/kg, p£¼0.05) increased by 10.7-73.3% in the presence of ticlopidine after oral administration of carvedilol. Consequently, the relative bioavailability (R.B.) of carvedilol was increased by 1.14- to 1.41-fold and the absolute bioavailability (A.B.) of carvedilol in the presence of ticlopidine was increased by 36.2-38.5%. Compared to the i.v. control, ticlopidine could not significantly change the pharmacokinetic parameters of i.v. administered carvedilol. The enhanced oral bioavailability of carvedilol may result from inhibition of CYP2C9-mediated metabolism rather than P-gpmediated efflux of carvedilol in the intestinal and/or in liver and renal eliminatin of carvedilol by ticlopidine.
KEYWORD
Carvedilol, Ticlopidine, CYP2C9, P-glycoprotein, Pharmacokinetics, Bioavailability
FullTexts / Linksout information
Listed journal information
SCI(E) ÇмúÁøÈïÀç´Ü(KCI) KoreaMed